← Previous revision | Revision as of 14:41, 8 July 2025 | ||
Line 1: | Line 1: | ||
<!-- EDIT BELOW THIS LINE --> |
<!-- EDIT BELOW THIS LINE --> |
||
'''Spacecraft detumbling''' is the process of reducing or eliminating unwanted angular velocity (tumbling) of a spacecraft. |
|||
'''Spacecraft detumbling''' is the process of reducing or eliminating unwanted angular velocity (tumbling) of a spacecraft<ref name=":0">{{Cite journal |last=Invernizzi |first=Davide |last2=Lovera |first2=Marco |date=2020-03-01 |title=A projection-based controller for fast spacecraft detumbling using magnetic actuation |url=https://www.sciencedirect.com/science/article/pii/S0005109819306429 |journal=Automatica |volume=113 |pages=108779 |doi=10.1016/j.automatica.2019.108779 |issn=0005-1098}}</ref>. This process typically follows deployment from a launch vehicle, an on-orbit failure or an external perturbation. Detumbling is necessary to: |
|||
== Motivation == |
|||
Detumbling is necessary to: |
|||
* Stabilize the orientation [[Spacecraft attitude determination and control |(attitude)]] of the satellite for safer operations<ref>{{Cite journal |last=Aghili |first=Farhad |date=2009-09 |title=Time-Optimal Detumbling Control of Spacecraft |url=https://arc.aiaa.org/doi/10.2514/1.43189 |journal=Journal of Guidance, Control, and Dynamics |volume=32 |issue=5 |pages=1671–1675 |doi=10.2514/1.43189 |issn=0731-5090}}</ref> |
* Stabilize the orientation [[Spacecraft attitude determination and control |(attitude)]] of the satellite for safer operations<ref>{{Cite journal |last=Aghili |first=Farhad |date=2009-09 |title=Time-Optimal Detumbling Control of Spacecraft |url=https://arc.aiaa.org/doi/10.2514/1.43189 |journal=Journal of Guidance, Control, and Dynamics |volume=32 |issue=5 |pages=1671–1675 |doi=10.2514/1.43189 |issn=0731-5090}}</ref> |
||
Line 6: | Line 9: | ||
* Prepare tumbling debris or defunct objects for removal or servicing<ref>{{Cite journal |last=Caubet |first=Albert |last2=Biggs |first2=James D. |date=2014-03 |title=Design of an Attitude Stabilization Electromagnetic module for detumbling uncooperative targets |url=https://ieeexplore.ieee.org/document/6836325 |journal=2014 IEEE Aerospace Conference |pages=1–13 |doi=10.1109/AERO.2014.6836325}}</ref> |
* Prepare tumbling debris or defunct objects for removal or servicing<ref>{{Cite journal |last=Caubet |first=Albert |last2=Biggs |first2=James D. |date=2014-03 |title=Design of an Attitude Stabilization Electromagnetic module for detumbling uncooperative targets |url=https://ieeexplore.ieee.org/document/6836325 |journal=2014 IEEE Aerospace Conference |pages=1–13 |doi=10.1109/AERO.2014.6836325}}</ref> |
||
== Common detumbling strategies == |
== Detumbling strategies == |
||
=== Magnetic control: B-Dot === |
=== Magnetic control: B-Dot === |
||
Line 17: | Line 20: | ||
where <math>m </math> is the commanded [[magnetic dipole]] of the magnetic torquer, <math>K </math> is the controller proportional gain and <math>\dot{B} </math> is the rate of change of Earth's magnetic field. |
where <math>m </math> is the commanded [[magnetic dipole]] of the magnetic torquer, <math>K </math> is the controller proportional gain and <math>\dot{B} </math> is the rate of change of Earth's magnetic field. |
||
=== Magnetic control beyond the B-Dot algorithm === |
=== Magnetic control beyond the B-Dot algorithm === |
||
Over the years, a number of magnetic controllers beyond the B-Dot have been devised. The drivers for this research span from improving the convergence rate and solution robustness<ref name=":0" /><ref>{{Cite journal |last=Avanzini |first=Giulio |last2=Giulietti |first2=Fabrizio |date=2012-07 |title=Magnetic Detumbling of a Rigid Spacecraft |url=https://arc.aiaa.org/doi/10.2514/1.53074 |journal=Journal of Guidance, Control, and Dynamics |volume=35 |issue=4 |pages=1326–1334 |doi=10.2514/1.53074 |issn=0731-5090}}</ref>, to trying to overcome the underactuated nature of magnetic control<ref name=":1">{{Cite journal |last=Lovera |first=Marco |date=2015-07 |title=Magnetic satellite detumbling: The b-dot algorithm revisited |url=https://ieeexplore.ieee.org/document/7171005 |journal=2015 American Control Conference (ACC) |pages=1867–1872 |doi=10.1109/ACC.2015.7171005}}</ref><ref>{{Citation |last=Willis |first=Jacob B. |title=Building a Better B-Dot: Fast Detumbling with Non-Monotonic Lyapunov Functions |date=2024-07-03 |url=http://arxiv.org/abs/2407.02724 |access-date=2025-07-08 |publisher=arXiv |doi=10.48550/arXiv.2407.02724 |id=arXiv:2407.02724 |last2=Fisch |first2=Paulo R. M. |last3=Seletskiy |first3=Aleksei |last4=Manchester |first4=Zachary}}</ref>. |
Over the years, a number of magnetic controllers beyond the B-Dot have been devised. The drivers for this research span from improving the convergence rate and solution robustness<ref name=":0">{{Cite journal |last=Invernizzi |first=Davide |last2=Lovera |first2=Marco |date=2020-03-01 |title=A projection-based controller for fast spacecraft detumbling using magnetic actuation |url=https://www.sciencedirect.com/science/article/pii/S0005109819306429 |journal=Automatica |volume=113 |pages=108779 |doi=10.1016/j.automatica.2019.108779 |issn=0005-1098}}</ref><ref>{{Cite journal |last=Avanzini |first=Giulio |last2=Giulietti |first2=Fabrizio |date=2012-07 |title=Magnetic Detumbling of a Rigid Spacecraft |url=https://arc.aiaa.org/doi/10.2514/1.53074 |journal=Journal of Guidance, Control, and Dynamics |volume=35 |issue=4 |pages=1326–1334 |doi=10.2514/1.53074 |issn=0731-5090}}</ref>, to trying to overcome the underactuated nature of magnetic control<ref name=":1">{{Cite journal |last=Lovera |first=Marco |date=2015-07 |title=Magnetic satellite detumbling: The b-dot algorithm revisited |url=https://ieeexplore.ieee.org/document/7171005 |journal=2015 American Control Conference (ACC) |pages=1867–1872 |doi=10.1109/ACC.2015.7171005}}</ref><ref>{{Citation |last=Willis |first=Jacob B. |title=Building a Better B-Dot: Fast Detumbling with Non-Monotonic Lyapunov Functions |date=2024-07-03 |url=http://arxiv.org/abs/2407.02724 |access-date=2025-07-08 |publisher=arXiv |doi=10.48550/arXiv.2407.02724 |id=arXiv:2407.02724 |last2=Fisch |first2=Paulo R. M. |last3=Seletskiy |first3=Aleksei |last4=Manchester |first4=Zachary}}</ref>. |
||
QUI PUOI METTERE QUALCOSA IN PI§ SUL SURVEY |
QUI PUOI METTERE QUALCOSA IN PI§ SUL SURVEY |
||
Line 33: | Line 36: | ||
As Earth's magnetic field intensity decreases with altitude, there exists a practical boundary to the use of magnetic control due to degraded magnetorquer efficiency. This boundary is set to LEO missions, with an altitude ranging from 200-300 to 1600 km<ref>{{Citation |last=Allen |first=Christopher S. |title=Chapter 4 - Spaceflight environment |date=2018-01-01 |work=Space Safety and Human Performance |pages=87–138 |editor-last=Sgobba |editor-first=Tommaso |url=https://www.sciencedirect.com/science/article/pii/B9780081018699000042 |access-date=2025-07-08 |publisher=Butterworth-Heinemann |isbn=978-0-08-101869-9 |last2=Giraudo |first2=Martina |last3=Moratto |first3=Claudio |last4=Yamaguchi |first4=Nobuyasu |editor2-last=Kanki |editor2-first=Barbara |editor3-last=Clervoy |editor3-first=Jean-François |editor4-last=Sandal |editor4-first=Gro Mjeldheim}}</ref>. |
As Earth's magnetic field intensity decreases with altitude, there exists a practical boundary to the use of magnetic control due to degraded magnetorquer efficiency. This boundary is set to LEO missions, with an altitude ranging from 200-300 to 1600 km<ref>{{Citation |last=Allen |first=Christopher S. |title=Chapter 4 - Spaceflight environment |date=2018-01-01 |work=Space Safety and Human Performance |pages=87–138 |editor-last=Sgobba |editor-first=Tommaso |url=https://www.sciencedirect.com/science/article/pii/B9780081018699000042 |access-date=2025-07-08 |publisher=Butterworth-Heinemann |isbn=978-0-08-101869-9 |last2=Giraudo |first2=Martina |last3=Moratto |first3=Claudio |last4=Yamaguchi |first4=Nobuyasu |editor2-last=Kanki |editor2-first=Barbara |editor3-last=Clervoy |editor3-first=Jean-François |editor4-last=Sandal |editor4-first=Gro Mjeldheim}}</ref>. |
||
In these cases, thrusters can be employed for detumbling purposes<ref>{{Cite journal |last=Biggs |first=James D. |last2=Fournier |first2=Hugo |last3=Ceccherini |first3=Simone |last4=Topputo |first4=Francesco |date=2019-04-03 |title=Optimal de-tumbling of spacecraft with four thrusters |url=https://eurognc.ceas.org/archive/EuroGNC2019/html/CEAS-GNC-2019-051.html |language=en}}</ref> or to provide higher torque with respect to other control architectures<ref>{{Cite journal |last=Weidong |first=Huang |last2=Yulin |first2=Zhang |date=2004-07-01 |title=Rate damping control for small satellite using thruster |url=https://www.sciencedirect.com/science/article/pii/S0094576503003370 |journal=Acta Astronautica |volume=55 |issue=1 |pages=9–13 |doi=10.1016/j.actaastro.2003.12.013 |issn=0094-5765}}</ref>. |
In these cases, thrusters can be employed for detumbling purposes<ref>{{Cite journal |last=Biggs |first=James D. |last2=Fournier |first2=Hugo |last3=Ceccherini |first3=Simone |last4=Topputo |first4=Francesco |date=2019-04-03 |title=Optimal de-tumbling of spacecraft with four thrusters |url=https://eurognc.ceas.org/archive/EuroGNC2019/html/CEAS-GNC-2019-051.html |language=en}}</ref> or to provide higher torque with respect to other control architectures<ref>{{Cite journal |last=Weidong |first=Huang |last2=Yulin |first2=Zhang |date=2004-07-01 |title=Rate damping control for small satellite using thruster |url=https://www.sciencedirect.com/science/article/pii/S0094576503003370 |journal=Acta Astronautica |volume=55 |issue=1 |pages=9–13 |doi=10.1016/j.actaastro.2003.12.013 |issn=0094-5765}}</ref>. However, the use of thrusters is in general limited by the weight and propellant capacity of the thruster system. |
||
=== Movable appendages (booms) === |
=== Mass redistribution === |
||
Spacecraft detumbling can be performed through a movable-mass control device that is internal to the spacecraft and can move along a fixed direction track<ref>{{Cite journal |last=Kaplan |first=M. H. |date=1973-10-01 |title=Techniques for detumbling a disabled space base |url=https://ntrs.nasa.gov/citations/19740030143 |language=en}}</ref>. |
|||
⚫ | Early work on spacecraft detumbling demonstrated the effectiveness of deploying movable appendages for detumbling purposes<ref>{{Cite journal |last=Bainum |first=Peter M. |last2=Sellappan |first2=R. |date=1976-11-01 |title=Spacecraft detumbling using movable telescoping appendages |url=https://www.sciencedirect.com/science/article/pii/0094576576900059 |journal=Acta Astronautica |volume=3 |issue=11 |pages=953–969 |doi=10.1016/0094-5765(76)90005-9 |issn=0094-5765}}</ref>. One example of this is the so-called [[Yo-yo de-spin | yoyo despin]] |
||
In a recent related paper<ref>{{Cite journal |last=Edwards |first=T. L. |last2=Kaplan |first2=M. H. |date=1974-04-01 |title=Automatic spacecraft detumbling by internal mass motion |url=https://ntrs.nasa.gov/citations/19740045286 |journal=AIAA Journal |language=en |volume=12}}</ref>it was concluded that the mass track should be placed as far as possible from the vehicle center of mass and be oriented parallel to the maximum inertia axis; in addition the performance of the control system can be improved through larger mass amplitudes along the track and also larger mass sizes. It is apparent that the location and displacement amplitude of any internal control mas 031 be limited by the physical dimensions of the space vehicle. |
|||
=== Internal mass redistribution === |
|||
⚫ | Externally movable appendages solve this problem and allow for a greater range of location and displacement amplitudes of such a system<ref>{{Cite journal |last=Bainum |first=Peter M. |last2=Sellappan |first2=R. |date=1976-11-01 |title=Spacecraft detumbling using movable telescoping appendages |url=https://www.sciencedirect.com/science/article/pii/0094576576900059 |journal=Acta Astronautica |volume=3 |issue=11 |pages=953–969 |doi=10.1016/0094-5765(76)90005-9 |issn=0094-5765}}</ref>; however, as the size of the appendages increases the flexibility problems associated with such structures would have to be considered.One example of this is the so-called[[ yo-yo de-spin]] |
||
=== Advanced control techniques === |
=== Advanced control techniques === |
||
Line 45: | Line 50: | ||
== Application and ongoing development == |
== Application and ongoing development == |
||
Robotic capture detumbling (debris) -> tether |
Robotic capture detumbling (debris) -> tether |
||
== History == |
|||
== See also == |
== See also == |