copy-pasting from Fictitious domain method
← Previous revision | Revision as of 14:45, 7 July 2025 | ||
Line 2: | Line 2: | ||
<!-- EDIT BELOW THIS LINE --> |
<!-- EDIT BELOW THIS LINE --> |
||
In [[mathematics]], the '''fictitious domain method''' is a method to find the solution of a [[partial differential equation]]s on a complicated [[Domain of a function|domain]] <math>D</math>, by substituting a given problem |
|||
The '''apple''' is a fruit. |
|||
posed on a domain <math>D</math>, with a new problem posed on a simple domain <math>\Omega</math> containing <math>D</math>. |
|||
==General formulation== |
|||
Assume in some area <math>D \subset \mathbb{R}^n </math> we want to find solution <math>u(x)</math> of the [[equation]]: |
|||
: <math> |
|||
Lu = - \phi(x), x = (x_1, x_2, \dots , x_n) \in D |
|||
</math> |
|||
with [[Boundary value problem|boundary conditions]]: |
|||
: <math> |
|||
lu = g(x), x \in \partial D |
|||
</math> |
|||
The basic idea of fictitious domains method is to substitute a given problem |
|||
posed on a domain <math>D</math>, with a new problem posed on a simple [[shaped domain]] <math>\Omega</math> containing <math>D</math> (<math>D \subset \Omega</math>). For example, we can choose ''n''-dimensional parallelotope as <math>\Omega</math>. |
|||
Problem in the [[extended domain]] <math>\Omega</math> for the new solution <math>u_{\epsilon}(x)</math>: |
|||
: <math> |
|||
L_\epsilon u_\epsilon = - \phi^\epsilon(x), x = (x_1, x_2, \dots , x_n) \in \Omega |
|||
</math> |
|||
: <math> |
|||
l_\epsilon u_\epsilon = g^\epsilon(x), x \in \partial \Omega |
|||
</math> |
|||
It is necessary to pose the problem in the extended area so that the following condition is fulfilled: |
|||
: <math> |
|||
u_\epsilon (x) \xrightarrow[\epsilon \rightarrow 0]{ } u(x), x \in D |
|||
</math> |
|||
== Simple example, 1-dimensional problem == |
|||
:<math> |
|||
\frac{d^2u}{dx^2} = -2, \quad 0 < x < 1 \quad (1) |
|||
</math> |
|||
:<math> |
|||
u(0) = 0, u(1) = 0 |
|||
</math> |
|||
=== Prolongation by leading coefficients === |
|||
<math>u_\epsilon(x)</math> solution of problem: |
|||
: <math> |
|||
\frac{d}{dx}k^\epsilon(x)\frac{du_\epsilon}{dx} = - \phi^{\epsilon}(x), 0 < x < 2 \quad (2) |
|||
</math> |
|||
Discontinuous [[coefficient]] <math>k^{\epsilon}(x)</math> and right part of equation previous equation we obtain from expressions: |
|||
: <math> |
|||
k^\epsilon (x)=\begin{cases} 1, & 0 < x < 1 \\ \frac{1}{\epsilon^2}, & 1 < x < 2 |
|||
\end{cases} |
|||
</math> |
|||
: <math> |
|||
\phi^\epsilon (x)=\begin{cases} 2, & 0 < x < 1 \\ 2c_0, & 1 < x < 2 |
|||
\end{cases}\quad (3) |
|||
</math> |
|||
Boundary conditions: |
|||
: <math> |
|||
u_\epsilon(0) = 0, u_\epsilon(2) = 0 |
|||
</math> |
|||
Connection conditions in the point <math>x = 1</math>: |
|||
: <math> |
|||
[u_\epsilon] = 0,\ \left[k^\epsilon(x)\frac{du_\epsilon}{dx}\right] = 0 |
|||
</math> |
|||
where <math>[ \cdot ]</math> means: |
|||
: <math> |
|||
[p(x)] = p(x + 0) - p(x - 0) |
|||
</math> |
|||
Equation (1) has [[analytical solution]] therefore we can easily obtain error: |
|||
: <math> |
|||
u(x) - u_\epsilon(x) = O(\epsilon^2), \quad 0 < x < 1 |
|||
</math> |
|||
===Prolongation by lower-order coefficients=== |
|||
<math>u_\epsilon(x)</math> solution of problem: |
|||
: <math> |
|||
\frac{d^2u_\epsilon}{dx^2} - c^\epsilon(x)u_\epsilon = - \phi^\epsilon(x), \quad 0 < x < 2 \quad (4) |
|||
</math> |
|||
Where <math>\phi^{\epsilon}(x)</math> we take the same as in (3), and expression for <math>c^{\epsilon}(x)</math> |
|||
: <math> |
|||
c^\epsilon(x)=\begin{cases} |
|||
0, & 0 < x < 1 \\ |
|||
\frac{1}{\epsilon^2}, & 1 < x < 2. |
|||
\end{cases} |
|||
</math> |
|||
Boundary conditions for equation (4) same as for (2). |
|||
Connection conditions in the point <math>x = 1</math>: |
|||
: <math> |
|||
[u_\epsilon(0)] = 0,\ \left[\frac{du_\epsilon}{dx}\right] = 0 |
|||
</math> |
|||
Error: |
|||
: <math> |
|||
u(x) - u_\epsilon(x) = O(\epsilon), \quad 0 < x < 1 |
|||
</math> |
|||
==Literature== |
|||
* P.N. Vabishchevich, The Method of Fictitious Domains in Problems of Mathematical Physics, Izdatelstvo Moskovskogo Universiteta, Moskva, 1991. |
|||
* Smagulov S. Fictitious Domain Method for Navier–Stokes equation, Preprint CC SA USSR, 68, 1979. |
|||
* Bugrov A.N., Smagulov S. Fictitious Domain Method for Navier–Stokes equation, Mathematical model of fluid flow, Novosibirsk, 1978, p. 79–90 |
|||
{{Numerical PDE}} |