Triple junction

1 week ago 4

Interpretation

← Previous revision Revision as of 18:50, 4 July 2025
Line 22: Line 22:
In the years since, the term triple-junction has come to refer to any point where three tectonic plates meet.
In the years since, the term triple-junction has come to refer to any point where three tectonic plates meet.


==Interpretation==
<ref>≈–––—°←→→→§</ref>==Interpretation==
The properties of triple junctions are most easily understood from the purely kinematic point of view where the plates are rigid and moving over the surface of the Earth. No knowledge of the Earth's interior or the geological details of the crust are then needed. Another useful simplification is that the kinematics of triple junctions on a flat Earth are essentially the same as those on the surface of a sphere. On a sphere, plate motions are described as relative rotations about [[Euler pole]]s (see [[Plate reconstruction]]), and the relative motion at every point along a plate boundary can be calculated from this rotation. But the area around a triple junction is small enough (relative to the size of the sphere) and (usually) far enough from the pole of rotation, that the relative motion across a boundary can be assumed to be constant along that boundary. Thus, analysis of triple junctions can usually be done on a flat surface with motions defined by vectors.
The properties of triple junctions are most easily understood from the purely kinematic point of view where the plates are rigid and moving over the surface of the Earth. No knowledge of the Earth's interior or the geological details of the crust are then needed. Another useful simplification is that the kinematics of triple junctions on a flat Earth are essentially the same as those on the surface of a sphere. On a sphere, plate motions are described as relative rotations about [[Euler pole]]s (see [[Plate reconstruction]]), and the relative motion at every point along a plate boundary can be calculated from this rotation. But the area around a triple junction is small enough (relative to the size of the sphere) and (usually) far enough from the pole of rotation, that the relative motion across a boundary can be assumed to be constant along that boundary. Thus, analysis of triple junctions can usually be done on a flat surface with motions defined by vectors.


Open Full Post