Fraxinus excelsior

2 days ago 2

ce and move into subsections of ecology. genome mainly related to ash dieback so move sequence to desc.

← Previous revision Revision as of 17:24, 4 July 2025
Line 24: Line 24:
European ash rarely exceeds 250 years of age. However, there are numerous specimens estimated between 200 and 250 years old and there are a few over 250. The largest is in [[Clapton Court]], England, and is {{convert|9|m|ft|1|abbr=on}} in girth. There are several examples over {{convert|4.5|m|ft|1}} in [[Derbyshire]] alone.
European ash rarely exceeds 250 years of age. However, there are numerous specimens estimated between 200 and 250 years old and there are a few over 250. The largest is in [[Clapton Court]], England, and is {{convert|9|m|ft|1|abbr=on}} in girth. There are several examples over {{convert|4.5|m|ft|1}} in [[Derbyshire]] alone.


The genome of ''Fraxinus excelsior'' has been sequenced using the self-pollinated offspring of a tree from [[Worcestershire]], held by the [[Earth Trust]].<ref>{{Cite journal |last=Sollars |first=Elizabeth S. A. |last2=Harper |first2=Andrea L. |last3=Kelly |first3=Laura J. |last4=Sambles |first4=Christine M. |last5=Ramirez-Gonzalez |first5=Ricardo H. |last6=Swarbreck |first6=David |last7=Kaithakottil |first7=Gemy |last8=Cooper |first8=Endymion D. |last9=Uauy |first9=Cristobal |last10=Havlickova |first10=Lenka |last11=Worswick |first11=Gemma |last12=Studholme |first12=David J. |last13=Zohren |first13=Jasmin |last14=Salmon |first14=Deborah L. |last15=Clavijo |first15=Bernardo J. |date=2017-01 |title=Genome sequence and genetic diversity of European ash trees |url=https://www.nature.com/articles/nature20786 |journal=Nature |language=en |volume=541 |issue=7636 |pages=212–216 |doi=10.1038/nature20786 |issn=0028-0836}}</ref>
==Distribution==
==Distribution==
''Fraxinus excelsior'' is native to [[Europe]] from northern [[Spain]] to [[Russia]], and from southern [[Fennoscandia]] to northern [[Greece]].<ref name="Thomas-2016"/> It is also considered native in southwestern [[Asia]] from northern [[Turkey]] east to the [[Caucasus]] and [[Alborz]] mountains. The northernmost naturally occurring location is in the [[Trondheimsfjord]] region of [[Norway]], though they are planted further north.<ref name="Rushforth-1999"/> The species is widely cultivated and reportedly naturalized in [[New Zealand]] and in scattered locales in the [[United States]] and [[Canada]] including [[Nova Scotia]], [[New Brunswick]], [[Quebec]], [[Massachusetts]], [[Connecticut]], [[New York (state)|New York]], [[New Jersey]], [[Maryland]], [[Ontario]], [[Ohio]], [[Kentucky]] and [[British Columbia]].{{citation needed|date=March 2016}}
''Fraxinus excelsior'' is native to [[Europe]] from northern [[Spain]] to [[Russia]], and from southern [[Fennoscandia]] to northern [[Greece]].<ref name="Thomas-2016"/> It is also considered native in southwestern [[Asia]] from northern [[Turkey]] east to the [[Caucasus]] and [[Alborz]] mountains. The northernmost naturally occurring location is in the [[Trondheimsfjord]] region of [[Norway]], though they are planted further north.<ref name="Rushforth-1999"/> The species is widely cultivated and reportedly naturalized in [[New Zealand]] and in scattered locales in the [[United States]] and [[Canada]] including [[Nova Scotia]], [[New Brunswick]], [[Quebec]], [[Massachusetts]], [[Connecticut]], [[New York (state)|New York]], [[New Jersey]], [[Maryland]], [[Ontario]], [[Ohio]], [[Kentucky]] and [[British Columbia]].{{citation needed|date=March 2016}}
Line 65: Line 66:
* ''[[Aculus epiphyllus]]''
* ''[[Aculus epiphyllus]]''
-->
-->
== Ash dieback ==
=== Ash dieback ===
Ash dieback is caused by the [[fungus]] ''[[Hymenoscyphus fraxineus]]'' which was previously known as ''[[Chalara fraxinea]].''
Ash dieback is caused by the [[fungus]] ''[[Hymenoscyphus fraxineus]]'' which was previously known as ''[[Chalara fraxinea]].''
Research into the genetics of the resistance of ash (''Fraxinus excelsior'') has shown that resistance does occur in European populations, but at least for the samples tested, it is neither common nor strong.<ref>{{cite journal |title=Clonal differences in susceptibility to the dieback of ''Fraxinus excelsior'' in southern Sweden |vauthors=Stener LG |year=2012 |journal=Scandinavian Journal of Forest Research |doi=10.1080/02827581.2012.735699 |volume=28 |issue = 3|pages=205–216|s2cid=85292870 }}</ref><ref>{{cite journal |title=Adaptive potential of ash (''Fraxinus excelsior'') populations against the novel emerging pathogen ''Hymenoscyphus pseudoalbidus''|vauthors=Kjær ED |year=2012 |journal=Evolutionary Applications |display-authors=etal |doi=10.1111/j.1752-4571.2011.00222.x |pmid=25568043 |pmc=3353348 |volume=5 |issue = 3|pages=219–228|bibcode=2012EvApp...5..219K }}</ref><ref>{{cite journal |title=Presence of natural genetic resistance in ''Fraxinus excelsior'' (Oleraceae) to ''Chalara fraxinea'' (Ascomycota): an emerging infectious disease|vauthors=McKinney LV |year=2011 |journal=Heredity|display-authors=etal |volume=106 |issue=5|doi=10.1038/hdy.2010.119 |pmid=20823903|pages=788–797|pmc=3186218|bibcode=2011Hered.106..788M }}</ref><ref name="Pliūra-2011">{{cite journal |vauthors=Pliūra A, Lygis V, Suchockas V, Bartkevičius E |year=2011 |title=Performance of twenty four European ''Fraxinus excelsior'' populations in three Lithuanian progeny trials with a special emphasis on resistance to ''Chlara fraxinea'' |journal=Baltic Forestry |volume=17 |issue=1 |pages=17–34 |url=http://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&id=267:pliura-a-lygis-v-suchockas-v-and-bartkevicius-e-2011-performance-of-twenty-four-european-fraxinus-excelsior-populations-in-three-lithuanian-progeny-trials-with-a-special-emphasis-on-resistance-to-chlara-fraxinea-baltic-forestry-17-1-17-34&catid=33:baltic-forestry-2011-17-1 |archiveurl=https://web.archive.org/web/20150402142745/http://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&id=267:pliura-a-lygis-v-suchockas-v-and-bartkevicius-e-2011-performance-of-twenty-four-european-fraxinus-excelsior-populations-in-three-lithuanian-progeny-trials-with-a-special-emphasis-on-resistance-to-chlara-fraxinea-baltic-forestry-17-1-17-34&catid=33:baltic-forestry-2011-17-1|archive-date=2015-04-02 }}</ref> Due to the importance of ''F. excelsior'' as a host, Jönsson and Thor 2012 find that rare/threatened [[lichen]]s face an unusually high (0.38) [[coextinction risk probability]] ''vis-a-vis'' the host tree in the [[wooded meadow]]s of [[Gotland]], Sweden.<ref name="Oliva-2020">{{cite journal | last1=Oliva | first1=Jonàs | last2=Redondo | first2=Miguel Ángel | last3=Stenlid | first3=Jan | title=Functional Ecology of Forest Disease | journal=[[Annual Review of Phytopathology]] | publisher=[[Annual Reviews (publisher)|Annual Reviews]] | volume=58 | issue=1 | date=2020-08-25 | issn=0066-4286 | doi=10.1146/annurev-phyto-080417-050028 | pages=343–361| pmid=32396761 | bibcode=2020AnRvP..58..343O | s2cid=218618105 }}</ref>
Research into the genetics of the resistance of ash (''Fraxinus excelsior'') has shown that resistance does occur in European populations, but at least for the samples tested, it is neither common nor strong.<ref>{{cite journal |title=Clonal differences in susceptibility to the dieback of ''Fraxinus excelsior'' in southern Sweden |vauthors=Stener LG |year=2012 |journal=Scandinavian Journal of Forest Research |doi=10.1080/02827581.2012.735699 |volume=28 |issue = 3|pages=205–216|s2cid=85292870 }}</ref><ref>{{cite journal |title=Adaptive potential of ash (''Fraxinus excelsior'') populations against the novel emerging pathogen ''Hymenoscyphus pseudoalbidus''|vauthors=Kjær ED |year=2012 |journal=Evolutionary Applications |display-authors=etal |doi=10.1111/j.1752-4571.2011.00222.x |pmid=25568043 |pmc=3353348 |volume=5 |issue = 3|pages=219–228|bibcode=2012EvApp...5..219K }}</ref><ref>{{cite journal |title=Presence of natural genetic resistance in ''Fraxinus excelsior'' (Oleraceae) to ''Chalara fraxinea'' (Ascomycota): an emerging infectious disease|vauthors=McKinney LV |year=2011 |journal=Heredity|display-authors=etal |volume=106 |issue=5|doi=10.1038/hdy.2010.119 |pmid=20823903|pages=788–797|pmc=3186218|bibcode=2011Hered.106..788M }}</ref><ref name="Pliūra-2011">{{cite journal |vauthors=Pliūra A, Lygis V, Suchockas V, Bartkevičius E |year=2011 |title=Performance of twenty four European ''Fraxinus excelsior'' populations in three Lithuanian progeny trials with a special emphasis on resistance to ''Chlara fraxinea'' |journal=Baltic Forestry |volume=17 |issue=1 |pages=17–34 |url=http://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&id=267:pliura-a-lygis-v-suchockas-v-and-bartkevicius-e-2011-performance-of-twenty-four-european-fraxinus-excelsior-populations-in-three-lithuanian-progeny-trials-with-a-special-emphasis-on-resistance-to-chlara-fraxinea-baltic-forestry-17-1-17-34&catid=33:baltic-forestry-2011-17-1 |archiveurl=https://web.archive.org/web/20150402142745/http://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&id=267:pliura-a-lygis-v-suchockas-v-and-bartkevicius-e-2011-performance-of-twenty-four-european-fraxinus-excelsior-populations-in-three-lithuanian-progeny-trials-with-a-special-emphasis-on-resistance-to-chlara-fraxinea-baltic-forestry-17-1-17-34&catid=33:baltic-forestry-2011-17-1|archive-date=2015-04-02 }}</ref> Due to the importance of ''F. excelsior'' as a host, Jönsson and Thor 2012 find that rare/threatened [[lichen]]s face an unusually high (0.38) [[coextinction risk probability]] ''vis-a-vis'' the host tree in the [[wooded meadow]]s of [[Gotland]], Sweden.<ref name="Oliva-2020">{{cite journal | last1=Oliva | first1=Jonàs | last2=Redondo | first2=Miguel Ángel | last3=Stenlid | first3=Jan | title=Functional Ecology of Forest Disease | journal=[[Annual Review of Phytopathology]] | publisher=[[Annual Reviews (publisher)|Annual Reviews]] | volume=58 | issue=1 | date=2020-08-25 | issn=0066-4286 | doi=10.1146/annurev-phyto-080417-050028 | pages=343–361| pmid=32396761 | bibcode=2020AnRvP..58..343O | s2cid=218618105 }}</ref>
The genomic basis of ash dieback resistance has been characterised by the sequencing of mass screening trials.<ref>{{Cite journal |last=Stocks |first=Jonathan J. |last2=Metheringham |first2=Carey L. |last3=Plumb |first3=William J. |last4=Lee |first4=Steve J. |last5=Kelly |first5=Laura J. |last6=Nichols |first6=Richard A. |last7=Buggs |first7=Richard J. A. |date=2019-11-18 |title=Genomic basis of European ash tree resistance to ash dieback fungus |url=https://www.nature.com/articles/s41559-019-1036-6 |journal=Nature Ecology & Evolution |language=en |volume=3 |issue=12 |pages=1686–1696 |doi=10.1038/s41559-019-1036-6 |issn=2397-334X |pmc=6887550 |pmid=31740845}}</ref> It was demonstrated that natural selection was acting in a natural woodland in Surrey, England, to increase resistance to ash dieback in the younger generation of ash. <ref>{{Cite journal |last=Metheringham |first=Carey L. |last2=Plumb |first2=William J. |last3=Flynn |first3=William R. M. |last4=Stocks |first4=Jonathan J. |last5=Kelly |first5=Laura J. |last6=Nemesio Gorriz |first6=Miguel |last7=Grieve |first7=Stuart W. D. |last8=Moat |first8=Justin |last9=Lines |first9=Emily R. |last10=Buggs |first10=Richard J. A. |last11=Nichols |first11=Richard A. |date=2025-06-26 |title=Rapid polygenic adaptation in a wild population of ash trees under a novel fungal epidemic |url=https://www.science.org/doi/10.1126/science.adp2990 |journal=Science |language=en |volume=388 |issue=6754 |pages=1422–1425 |doi=10.1126/science.adp2990 |issn=0036-8075}}</ref> The genomic basis of ash dieback resistance has also been investigated in continental Europe. <ref>{{Cite journal |last=Doonan |first=James M. |last2=Budde |first2=Katharina B. |last3=Kosawang |first3=Chatchai |last4=Lobo |first4=Albin |last5=Verbylaite |first5=Rita |last6=Brealey |first6=Jaelle C. |last7=Martin |first7=Michael D. |last8=Pliura |first8=Alfas |last9=Thomas |first9=Kristina |last10=Konrad |first10=Heino |last11=Seegmüller |first11=Stefan |last12=Liziniewicz |first12=Mateusz |last13=Cleary |first13=Michelle |last14=Nemesio‐Gorriz |first14=Miguel |last15=Fussi |first15=Barbara |date=2025-05 |title=Multiple, Single Trait GWAS and Supervised Machine Learning Reveal the Genetic Architecture of Fraxinus excelsior Tolerance to Ash Dieback in Europe |url=https://onlinelibrary.wiley.com/doi/10.1111/pce.15361 |journal=Plant, Cell & Environment |language=en |volume=48 |issue=5 |pages=3793–3809 |doi=10.1111/pce.15361 |issn=0140-7791 |pmc=11963480 |pmid=39822124}}</ref>


== Emerald ash borer ==
=== Emerald ash borer ===
The emerald ash borer ''Agrilus planipennis'' has recently begun to invade the range of ''Fraxinus excelsior.''<ref>{{Cite journal |last=Meshkova |first=Valentyna |last2=Borysenko |first2=Oleksandr |last3=Kucheryavenko |first3=Tetiana |last4=Skrylnyk |first4=Yuriy |last5=Davydenko |first5=Kateryna |last6=Holusa |first6=Jaroslav |date=2023-04-03 |title=Potential Westward Spread of Emerald Ash Borer, Agrilus planipennis Fairmaire, 1888 (Coleoptera: Buprestidae) from Eastern Ukraine |url=https://www.mdpi.com/1999-4907/14/4/736 |journal=Forests |language=en |volume=14 |issue=4 |pages=736 |doi=10.3390/f14040736 |issn=1999-4907}}</ref> Some studies suggest that ''Fraxinus excelsior'' may be less susceptible to emerald ash borer than American species of ash are <ref>{{Cite journal |last=Showalter |first=David N. |last2=Saville |first2=Robert J. |last3=Orton |first3=Elizabeth S. |last4=Buggs |first4=Richard J. A. |last5=Bonello |first5=Pierluigi |last6=Brown |first6=James K. M. |date=2020-01 |title=Resistance of European ash ( Fraxinus excelsior ) saplings to larval feeding by the emerald ash borer ( Agrilus planipennis ) |url=https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10077 |journal=PLANTS, PEOPLE, PLANET |language=en |volume=2 |issue=1 |pages=41–46 |doi=10.1002/ppp3.10077 |issn=2572-2611}}</ref>. However, the effect of the interaction of ash dieback and emerald ash borer is as yet unknown.
The emerald ash borer ''Agrilus planipennis'' has recently begun to invade the range of ''Fraxinus excelsior.''<ref>{{Cite journal |last=Meshkova |first=Valentyna |last2=Borysenko |first2=Oleksandr |last3=Kucheryavenko |first3=Tetiana |last4=Skrylnyk |first4=Yuriy |last5=Davydenko |first5=Kateryna |last6=Holusa |first6=Jaroslav |date=2023-04-03 |title=Potential Westward Spread of Emerald Ash Borer, Agrilus planipennis Fairmaire, 1888 (Coleoptera: Buprestidae) from Eastern Ukraine |url=https://www.mdpi.com/1999-4907/14/4/736 |journal=Forests |language=en |volume=14 |issue=4 |pages=736 |doi=10.3390/f14040736 |issn=1999-4907}}</ref> Some studies suggest that ''Fraxinus excelsior'' may be less susceptible to emerald ash borer than American species of ash are <ref>{{Cite journal |last=Showalter |first=David N. |last2=Saville |first2=Robert J. |last3=Orton |first3=Elizabeth S. |last4=Buggs |first4=Richard J. A. |last5=Bonello |first5=Pierluigi |last6=Brown |first6=James K. M. |date=2020-01 |title=Resistance of European ash ( Fraxinus excelsior ) saplings to larval feeding by the emerald ash borer ( Agrilus planipennis ) |url=https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10077 |journal=PLANTS, PEOPLE, PLANET |language=en |volume=2 |issue=1 |pages=41–46 |doi=10.1002/ppp3.10077 |issn=2572-2611}}</ref>. However, the effect of the interaction of ash dieback and emerald ash borer is as yet unknown.

==Genome and resistance to threats==
The genome of ''Fraxinus excelsior'' has been sequenced by a group at [[Queen Mary, University of London|Queen Mary University of London]] led by Richard Buggs using the self-pollinated offspring of a tree from [[Worcestershire]], held by the [[Earth Trust]].<ref>{{Cite journal |last=Sollars |first=Elizabeth S. A. |last2=Harper |first2=Andrea L. |last3=Kelly |first3=Laura J. |last4=Sambles |first4=Christine M. |last5=Ramirez-Gonzalez |first5=Ricardo H. |last6=Swarbreck |first6=David |last7=Kaithakottil |first7=Gemy |last8=Cooper |first8=Endymion D. |last9=Uauy |first9=Cristobal |last10=Havlickova |first10=Lenka |last11=Worswick |first11=Gemma |last12=Studholme |first12=David J. |last13=Zohren |first13=Jasmin |last14=Salmon |first14=Deborah L. |last15=Clavijo |first15=Bernardo J. |date=2017-01 |title=Genome sequence and genetic diversity of European ash trees |url=https://www.nature.com/articles/nature20786 |journal=Nature |language=en |volume=541 |issue=7636 |pages=212–216 |doi=10.1038/nature20786 |issn=0028-0836}}</ref> This group later characterised the genomic basis of ash dieback resistance by the sequencing of mass screening trials.<ref>{{Cite journal |last=Stocks |first=Jonathan J. |last2=Metheringham |first2=Carey L. |last3=Plumb |first3=William J. |last4=Lee |first4=Steve J. |last5=Kelly |first5=Laura J. |last6=Nichols |first6=Richard A. |last7=Buggs |first7=Richard J. A. |date=2019-11-18 |title=Genomic basis of European ash tree resistance to ash dieback fungus |url=https://www.nature.com/articles/s41559-019-1036-6 |journal=Nature Ecology & Evolution |language=en |volume=3 |issue=12 |pages=1686–1696 |doi=10.1038/s41559-019-1036-6 |issn=2397-334X |pmc=6887550 |pmid=31740845}}</ref> Using this knowledge they were later able to show that natural selection was acting in a natural woodland in Surrey, England, to increase resistance to ash dieback in the younger generation of ash. <ref>{{Cite journal |last=Metheringham |first=Carey L. |last2=Plumb |first2=William J. |last3=Flynn |first3=William R. M. |last4=Stocks |first4=Jonathan J. |last5=Kelly |first5=Laura J. |last6=Nemesio Gorriz |first6=Miguel |last7=Grieve |first7=Stuart W. D. |last8=Moat |first8=Justin |last9=Lines |first9=Emily R. |last10=Buggs |first10=Richard J. A. |last11=Nichols |first11=Richard A. |date=2025-06-26 |title=Rapid polygenic adaptation in a wild population of ash trees under a novel fungal epidemic |url=https://www.science.org/doi/10.1126/science.adp2990 |journal=Science |language=en |volume=388 |issue=6754 |pages=1422–1425 |doi=10.1126/science.adp2990 |issn=0036-8075}}</ref> Another study has investigated the genomic basis of ash dieback resistance using data from continental Europe. <ref>{{Cite journal |last=Doonan |first=James M. |last2=Budde |first2=Katharina B. |last3=Kosawang |first3=Chatchai |last4=Lobo |first4=Albin |last5=Verbylaite |first5=Rita |last6=Brealey |first6=Jaelle C. |last7=Martin |first7=Michael D. |last8=Pliura |first8=Alfas |last9=Thomas |first9=Kristina |last10=Konrad |first10=Heino |last11=Seegmüller |first11=Stefan |last12=Liziniewicz |first12=Mateusz |last13=Cleary |first13=Michelle |last14=Nemesio‐Gorriz |first14=Miguel |last15=Fussi |first15=Barbara |date=2025-05 |title=Multiple, Single Trait GWAS and Supervised Machine Learning Reveal the Genetic Architecture of Fraxinus excelsior Tolerance to Ash Dieback in Europe |url=https://onlinelibrary.wiley.com/doi/10.1111/pce.15361 |journal=Plant, Cell & Environment |language=en |volume=48 |issue=5 |pages=3793–3809 |doi=10.1111/pce.15361 |issn=0140-7791 |pmc=11963480 |pmid=39822124}}</ref>


==Uses==
==Uses==
Open Full Post